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ABSTRACT. We prove congruence relations modulo cyclotomic polynomials for multisums
of g-factorial ratios, therefore generalizing many well-known p-Lucas congruences. Such
congruences connect various classical generating series to their g-analogs. Using this, we
prove a propagation phenomenon: when these generating series are algebraically indepen-
dent, this is also the case for their g-analogs.

1. INTRODUCTION AND MAIN RESULTS

After the seminal work of Lucas [10], a great attention has been paid on congruences
modulo prime numbers p satisfied by various combinatorial sequences related to binomial
coefficients. A typical example of these so-called p-Lucas congruences is given by:

(lej:;))r = (27:)(2:) mod p, (1.1)

where 0 < m < p—1,r > 1,and n > 0. In terms of generating series these congruences (1.1)
translate as

9r(x) = A(x)gr(2)  mod pZ[«]], (1.2)
where
gr(x) := Z (2:) "

and A(z) is a polynomial (depending on r and p) in Z[z] of degree at most p — 1. This
functional point of view led the authors of [2] to define general sets of multivariate power
series including the following one which is of particular interest for our purpose.

Definition 1.1. Let d be a positive integer and x = (x1,...,xq) be a vector of indetermi-
nates. We let £, denote the set of all power series g(x) in Z|[[x]] with constant term equal
to 1 and such that for every prime number p:

(i) there exist a positive integer k and a polynomial A in Z[x] satisfying

k
9(x) = A(x)g(x*") mod pZ[[x]].
(i) deg, (A) <p* —1 for alli, 1 <i<d.
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Using p-adic computations inspired by works of Christol and Dwork, it was proved in [2]
that a large family of multivariate generalized hypergeometric series belongs to £;. This
provides, by specialization, a unified way to reprove most of known p-Lucas congruences as
well as to find many new ones. In addition, a general method to prove algebraic indepen-
dence of power series whose coefficients satisfy p-Lucas type congruences was developed.
Let us illustrate this approach with the following example. In 1980, Stanley [14]| conjec-
tured that the series g, are transcendental over C(z) except for r = 1, in which case we
have g;(x) = (v/1 —4x)~!. He also proved the transcendence for r even. The conjecture
was solved independently by Flajolet [6] through asymptotic considerations and by Sharif
and Woodcock [13] by using the previously mentioned Lucas congruences. Incidentally,
this result is also a consequence of the interlacing criterion proved by Beukers and Heck-
man [3] for generalized hypergeometric series. Though there are three different ways to
obtain the transcendence of g, for » > 2, not much was apparently known about their
algebraic independence, until Congruence (1.1) was used in [1, 2| to prove the following
result: all elements of the set {g.(x) : r > 2} are algebraically independent over C(x).

In the present work, we aim at generalizing the approach of [2| in the setting of g-series.
It started with the following observation which can be derived from [7, 12, 15]:

2(m+nb)|" _ [2m]" [2n\"
= d Y/ 1.3
i =) meaewz, (1)
where n,m, b, r are nonnegative integers with b > 1, 0 < m < b — 1, and ¢,(x) denotes

the bth cyclotomic polynomial over Q. Here, for every complex number ¢, the central
g-binomial coefficients are defined as

2n]  [2n],! o l-q
[n]q = Tl € N|q], where [n],! := E -

is the g-analog of n!. It is implicitly considered as a polynomial in ¢ so that the formula is
still valid for ¢ = 1. In particular, one has [n];! = n! and the congruence (1.3) allows one
to recover (1.1) since ¢,(1) = p. Again in terms of generating series, (1.3) translates as

frlg;w) = Algi 2)g,(2")  mod ¢y(q)Zg] [[]] . (1.4)
where A(q; x) is a polynomial in Z|[g][z] of degree (in x) at most b — 1 and we have set

frlgiz) = {2:} ",
n=0 q
This provides an arithmetic connection between the generating series g,.(z) and its g-analog
fr(q;x). Tt leads us to associate a set D(q; g) of g-deformations with every element g in
£4. We stress that D(q; g) is closed under g-derivation.

Definition 1.2. Let ¢ be a fixed nonzero complex number. Let g(x) be a power series in
£4. We let D(q; g) denote the set of all nonzero power series f(g¢;x) in Z|[g][[x]] such that
for all integers b > 1 there exists a polynomial A(g;x) with coefficients in Z[q] satisfying:

flg;x) = A(g;x)g(x")  mod ¢y(q)Zg)[[x]].
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Our first result shows a propagation phenomenon of algebraic independence from gen-
erating series in £, to their g-analogs.

Theorem 1.3. Let g be a nonzero compler number. Let g1(x), ..., g,(X) be power series
in £4, which are algebraically independent over C(x). Then for any fi(q;x) in D(q; g;),
1 <i < mn, the series fi1(q;X),..., fu(q;x) are also algebraically independent over C(x).

It immediately implies that all elements of the set {f.(¢;z) : r > 2} are algebraically
independent over C(z) for all nonzero complex numbers g. More generally, there is a
long tradition for combinatorists in studying ¢-analogs of famous sequences of natural
numbers, as the additional variable ¢ gives the opportunity to refine the enumeration of
combinatorial objects counted by the ¢ = 1 case. To some extent, the nature of a generating
series reflects the underlying structure of the objects it counts [4]. By nature, we mean
for instance whether the generating series is rational, algebraic, or D-finite. In the same
line, algebraic (in)dependence of generating series can be considered as a reasonable way
to measure how distinct families of combinatorial objects may be (un)related.

It is known from |2]| that many generating series ¢ of multisums of factorial ratios belong
to £4. For such series g, we will define g-analogs and prove that they lie in the set D(q; g).
This will yield at once algebraic independence results, but also many generalizations of
Congruence (1.3). Finding congruences with respect to cyclotomic polynomials is actually
not a recent problem (see for instance [12, 8, 11] and the references cited there).

Our second result below is a general congruence relation extending (1.3) to the mul-
tidimensional case, by considering g-factorial ratios in the spirit of the ones in [16]. For
positive integers d, u,v, let e = (ey,...,e,) and f = (fi,...,f,) be tuples of vectors in N¢,
For n € N we define a g-analog of multidimensional factorial ratios (see Section 2 for
precise notations) by:
le1 -nly!---[e, - m],! ]

Qe,f(q; Il) = [fl . n]q[ - [fv . n]q!

Furthermore, we consider the Landau step function A, ; defined on RY by

A f(x) = ZLei-XJ =D lf - x].

v
J=1

We also define [e| = >, e;, [f| = >__, f;, and set:
D, :={x € [0,1)? : there is t in e or f such that t-x > 1}.

Proposition 1.4. Let ¢ and f be two tuples of vectors in N¢ such that |e| = |f| and
A, s is greater than or equal to 1 on D, ;. Then, for every positive integer b, every a in
{0,...,0— 1} and every n in N¢, we have Q. ;(¢;n) € Zlq] and

Qer(g;a+mnb) = Q. r(q;a) Q. s(1;n)  mod ¢y(q)Z[q].

Proposition 1.4 extends many known results, both for g-analogs and p-Lucas congruences.
For instance, choosing d = 1, u = 1, v = 2, e; = 2, and f; = fo = 1 yields (1.3), while
taking b prime and ¢ = 1 allows one to recover Proposition 8.7 in [2]. As we will see in
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Section 3, Proposition 1.4 also leads to congruences for (multi-)sums of ¢g-factorial ratios. As
an illustration, we provide below two examples connected to the famous Apéry sequences.

Proposition 1.5. Consider for a given nonnegative integer t the following q-analogs of
the Apéry sequences

)= 3 [Zﬂ"zk} and by(g) =3 ¢ [Zﬂ”zkr

k=0 k=0
Then, for all nonnegative integers n,m,b with b >1, 0 < m < b— 1, we have

minb(q) = am(q)an(1)  mod @y(q)Zlg] and  byins(q) = bm(q)ba(1)  mod ¢p(q)Z]g]-

Setting
,f q7 Z Qe,f q;n

neNd
and assuming the conditions of Proposition 1.4, we obtain that F, ;(¢;x) belongs to
D(q; Fe ¢(1;x)), as F, ¢(1;x) is in £, by |2, Proposition 8.1|. Theorem 1.3 therefore implies
that algebraic independence among series F, ;(1;x) propagates to their corresponding g-
analogs F. ;(q;x). As noticed before, this holds for the series g,(z) and their g-analogs
fr(q; ). Proposition 1.4 and a result about specializations of the series F, ;(¢;x) (stated
in Section 3) actually provide much more general results, such as the following one.

Proposition 1.6. For a fized nonzero complex number q, let F, be the set formed by the
unton of the three following sets:

(EEMr=o) L0002

EEUT )

n=0 k=0

and

Then all elements of F, are algebraically independent over C(x).

Proposition 1.6 is derived from Proposition 1.2 in [2], which corresponds to the case
qg=1.

In the next section, we fix some notation and recall basic facts about Dedekind domains.
In Section 3, we focus on congruence relations modulo cyclotomic polynomials and prove
Proposition 1.4. We also show how to derive results like Propositions 1.5 and 1.6. Finally,
the last section is devoted to a sketch of proof of Theorem 1.3.

2. BACKGROUND AND NOTATIONS

Let us introduce some notation and basic facts that will be used throughout this extended
abstract. Let d be a positive integer. Given d-tuples of real numbers m = (my, ..., my) and
= (ny,...,nq), we set m—+mn:= (my+nq,...,mg+ng) and m-n :=mn; +-- -+ mgng.
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If moreover A is a real number, then we set Am := (Amy, ..., Amy). We write m > n if we
have my, > ny for all kin {1,...,d}. We also set 0 := (0,...,0) and 1 :=(1,...,1).

Polynomials. Given a d-tuple of natural numbers n = (ny,...,nq) and a vector of
indeterminates x = (x1,...,24), we will denote by x" the monomial 7" ---z*. The
(total) degree of such a monomial is the nonnegative integer ny + --- 4+ ng. Given a ring
R and a polynomial P in R[x|, we denote by deg P the (total) degree of P, that is the
maximum of the total degrees of the monomials appearing in P with nonzero coefficient.
The partial degree of P with respect to the indeterminate x; is denoted by deg, (P).

Algebraic power series and algebraic independence. Let K be a field. We denote by
K[[x]] the ring of formal power series with coefficients in K and associated with the vector
of indeterminates x. We say that a power series f(x) € K[[x]] is algebraic if it is algebraic
over the field of rational functions K (x), that is, if there exist polynomials Ay,..., A4,, in
K[x], not all zero, such that Ag(x)+A;(x)f(x)+- - -+ An(x)f(x)™ = 0. Otherwise, f is said
to be transcendental. Let fi,..., f, be in K[[x]]. We say that fi,..., f, are algebraically
dependent if they are algebraically dependent over the field K (x), that is, if there exists a
nonzero polynomial P(Y;,...,Y,) in K[x|[Y1,...,Y,] such that P(fi,..., f,) = 0. When
there is no algebraic relation between them, the power series fi,..., f, are said to be
algebraically independent (over K (x)).

Dedekind domains. Let R be a Dedekind domain; that is, R is Noetherian, integrally
closed, and every nonzero prime ideal of R is a maximal ideal. Furthermore, any nonzero
element of R belongs to at most a finite number of maximal ideals of R. In other words,
given an infinite set S of maximal ideals of R, then one always has () .sp = {0}. For
every power series f(x) = > -y a(n)x™ with coefficients in R, we set

fp(x) =Y (a(n) mod p)x™ € (R/p)[[x]].

neNd

The power series f, is called the reduction of f modulo p. Let K denote the field of
fractions of R. The localization of R at a maximal ideal p is denoted by R,. Recall here
that R, can be seen as the following subset of K

R,={a/b:a€cRbeR\p}.
Then R, is a discrete valuation ring and the residue field R, /p is equal to R/p.

3. SOME GENERAL CONGRUENCES AND APPPLICATIONS

We first give the detailed proof of Proposition 1.4, and we will then see how to derive
results like Propositions 1.5 and 1.6.

Proof of Proposition 1.4. In this proof, we write Q for Q. ¢, A for A.; and D for D, ;.
Recall that for all nonnegative integers n we have

L= T a@ = = Lo,

1—
bin,b>2
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from which we deduce, by definition of the step function A,

= [[ ol (3.1)
b=2
As |e| = |f], the function A is 1-periodic in each of its variable and one easily obtains

from (3.1) that Q(g;n) is in Z[q] for every n in N? if, and only if A is nonnegative over
R?. This proves the first part of our proposition.
Let x be a complex variable. As |e| = |f|, we derive

u €;-a 1— e;-nb+k
Q(x;a + nb) = Q(z; nb) szl H’;:;( asf )
Hj:l [T (1 — afimoth)
If a/b is not in D, then for each t in e or f, no element of {1,...,t-a} is divisible by b.
Hence, if & is a complex primitive bth root of unity, then we have

Q(6sa+nb) = Q) L= LIt 0=8) _ o 106,00,

[T T — &)

so that
Q(r;a+nb) = Q(z;nb)Q(x;a) mod ¢y(x)Z[z]. (3.2)
We shall prove that this congruence also holds when a/b belongs to D. Indeed, in this
case we have A(a/b) > 1 by assumption. By (3.1), the ¢,(x)-valuation of Q(x;a + nb) is
A(% +n) = A(a/b) > 1, and the ¢,(z)-valuation of Q(z;a) is also A(a/b) > 1. Hence
both polynomials are divisible by ¢,(z) and (3.2) holds.
Now we shall prove that

Q(x;nd) = Q(1;n) mod ¢p(z)Z[z]. (3.3)
We have
Q(z;nb) = | g nb( —a¥) _ [T IS0 — bl_[ P 1(1 “kb)
II- szrib(l S B | Hf;;‘;(l — k) HZ ‘; (1 — k)
From |e| = | f|, we also derive
| N RO I D R | b ==
Lo L=k T T

which is a rational fraction Without pole at x = &, and whose value at &, equals Q(1;n).
Furthermore, for each ¢ in {1,...,b — 1}, we have

i TTes 1( b )
[T T (=)
Since Q(x;nb) € Z[z] and Q(&;nb) = Q(1;n), we obtain (3.3) as expected.

=(1-— 55)(\6\—|f|)~n = 1.
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We now show how Proposition 1.4 yields on the one hand congruences through a spe-
cialization rule, and on the other hand algebraic independence results.
Recall that, under the conditions of Proposition 1.4, we have

Fop(@x) = 3 Quplam)x™ € Zlg[x])

neNd

Then the congruence relation in Proposition 1.4 is equivalent to

Fep(q:x) = A(g:x) Fe,p (1,x") - mod ¢y (q)Z[q)[[x]]
for every positive integer b and with the additional condition that A(q;x) in Z[g][x] satisfies
deg, A(g;x) < b—1foralli, 1 <i < d. The following proposition is the key to prove
congruences for multisums of ¢-factorial ratios as in Proposition 1.6.

Proposition 3.1. Assume the conditions of Proposition 1.4 are satisfied. Moreover, let
t € N and m € N? be such that if x in [0,1)? satisfies m-x > 1, then A, ;(x) > 1. Then,
for every positive integer b, we have:

Fop(gq"a™, ... q"a™) = B(g:x)Fey(1;2"™, ... 2")  mod ¢y(q)Z[g][[x]],

where B(q;x) is a one variable polynomial in Z[q]|x] satisfying deg, B(q;x) < b— 1.
Choosing e = ((2,1),(1,1)) and f = ((1,0),(1,0),(1,0),(0,1),(0,1)), we get that

Z [2”1 + nQ]q![nl + nQ]q!xnl no
[n1]412[n2]4!? I

Foplgn,y) =
ni,n2>0
By Proposition 2 in [5], the function A, ; is greater than or equal to 1 on D, ¢ so that the

conditions of Proposition 1.4 are satisfied. Furthermore, we can use Proposition 3.1 with
= (¢,0) and m = (1,1) which yields

Fof(q:q'z, @) = B(q;2) Fey(1;2",2%)  mod ¢y(q)Z[g][[x],
where B(q;x) is a polynomial in Z[qg|[x] satisfying deg, B(q;x) < b—1. A direct compu-

tation shows that
et S5,
q q

n=0 k=

Fuy(lia,2) ZZ( ) (")

n=0 k=0

This yields the congruences for g-analogs of the first Apéry sequence a,(q) given in Propo-

sition 1.5. The result for the second Apéry sequence b, (q) is derived along the same line.
To prove Proposition 1.6, we first show by Proposition 3.1 that each series f(q;x) in F,

belongs to D(q; f(1;x)). For example, we use the following specialization associated with

t =1(0,0) and m = (1,1):

and

zz[ ] — Foylg5,9),

n=0 k=0
7



where [ K
n1 + N9 q‘r
Foplgx,y) = Ty
m%m [r]q!" [na] !
By Proposition 1.2 and Section 9.3 in [2], we know that F; (the set of all series f(1;z)) is
a subset of £, and that all elements of F; are algebraically independent over C(z). Hence
Theorem 1.3 implies that, for every nonzero complex number ¢, all elements of F, are

algebraically independent over C(z).

4. SKETCH OF PROOF OF THEOREM 1.3

Though Theorem 1.3 holds true for all nonzero complex number ¢, we will focus here
on the case where ¢ is an algebraic number. The case where ¢ is transcendental is actually
simpler even if it requires specific considerations we do not want to deal with here for space
limitation.

Throughout this section, we fix ¢ € Q. We let K be the number field Q(¢) and R :=
O(K) be its ring of integers. Recall that R is thus a Dedekind domain.

The proof of Theorem 1.3 relies on the following Kolchin-like proposition which is a
special instance of Proposition 4.3 in [2].

Proposition 4.1. Let p be a prime number, I be a finite extension of degree d, of Fp, and
k be a positive integer such that d, | k. Let fi,..., f, be nonzero power series in F[[x]]
satisfying fi(x) = Ai(x)f;(x") for some A; € F[x] and every 1 < i < n. If f1,.... fn
satisfy a nontrivial polynomial relation of degree d with coefficients in F(x), then there
exist my, ..., my € Z, not all zero, and a nonzero r(x) € F(x) such that

Aj(x)™ e Ay (x)™ = r(x)P L
Furthermore, |mq + - +my,| < d and |m;| < d for 1 <i<n.

We will also need the following result which will enable us to connect reductions modulo
prime numbers and modulo cyclotomic polynomials.

Proposition 4.2. There exist an infinite set S of maximal ideals of R such that, for all
p €S, we have Zlq) C R, and ¢»(q)Z]g) C pR, for some prime number b (depending on

p).

For space limitation, Proposition 4.2 will not be proved here. Its proof is elementary
when ¢ is a root of unity and relies on the S-unit theorem otherwise. We will also need
the two following auxiliary results, the first of which being Lemma 4.4 in [2].

Lemma 4.3. Let R be a Dedekind domain, K be its field of fractions, and gi,..., g, be
power series in R[[X]]. If gip, ..., gnp are linearly dependent over R/p for infinitely many
mazximal ideals p, then fi,..., f, are linearly dependent over K.

Lemma 4.4. Let K be a commutative field and set b a positive integer. Let r(x) € K(x)
and s(x) € K(x) N K[[x]] be two rational fractions such that s(0) # 0. If there exists a
nonzero (mod p if char(K) = p) integer m satisfying s(x°) = r(x)™, then there exists t(x)
in K(x) such that r(x) = t(x°).
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Proof of Theorem 1.3. Let S be the set of maximal ideals of R := O(K) given in Proposi-
tion 4.2. With all p in S, we associate a prime number p such that the residue field R/p is
a finite field of characteristic p so that pZ C p. Let d, be the degree of the field extension
R/p over F,. Since g; belongs to L4, there exists a polynomial A; € Z[x] such that

9i(x) = Ai(X)gi(kai) mod pl[x]]

with deg A; < p¥ — 1. We set k := lem(d,, k1, ..., k,). Then iterating the above relation,
for all iin {1,...,n} and all p in S, there exists B;(x) in Z[x] satisfying

gi(x) = B;(x)g;(x"")  mod p[[x]], (4.1)

with deg(B;) < p* — 1.

Now let us assume by contradiction that fi,..., f, are algebraically dependent over
C(x) and thus over K(x) for the coefficents of the formal power series f; belong to K
(see for instance [2]). Let Q(X,v1,...,ys) be a nonzero polynomial in R[x|[y1,...,yn]
of total degree at most s in yy,...,y, such that Q(x, filg;x), ... ,fn(q;x)) = 0. Since
fi € D(q; g;), for every i in {1,...,n}, Proposition 4.2 implies that fi(q;x) = A;(q; x)g;(x?)
mod pR,[[x]], for some prime b. Since @) and the series f; are all nonzero and R is a
Dedekind domain, there thus exists an infinite subset S’ of S such that, for every p in ',
the relation

Q(x, Al(;x)g1(x"), ..., An(;x)gn(x")) =0 mod pR,[[x]]

provides a nontrivial algebraic relation over R,/p = R/p between the series g;,. By
(4.1), one has g;(x?) = Bi(x%)g;(x*") mod p|[[x]] and Proposition 4.1 then applies to
Gipp(x°), ..., gnp(x®) by taking F = R/p. There thus exist integers my,...,m,, not all
zero, and a nonzero rational fraction r(x) in F'(x) such that

Bupx)™ - By (6™ = r(x)P" . (4.2)

As g; belongs to L4, the constant coefficient in the left-hand side of (4.2) is equal to 1. By
Lemma 4.4, as p* — 1 # 0 mod p, there exists a rational fraction u(x) in F(x) such that
r(x) = u(x®) and we obtain that Byj(x)™ - - Byp(x)™" = u(x)P"~1. Furthermore, we have
|mi+---+m,| <k and |m;| <k for 1 <i<n. Note that the rational fractions B;, u and
the integers m; all depend on p. However, since all the integers m; belong to a finite set,
the pigeonhole principle implies the existence of an infinite subset S” of §” and of integers
ti,...,t, such that, for all p in S”, we have m; = t; for 1 < i < n. We can thus assume
that p belongs to 8” and write u(x) = s(x)/t(x) with s(x) and #(x) in F[x] and coprime.
Since deg B; < p* — 1, the degrees of s(x) and t(x) are bounded by [ti| + -+ - + |t,| < nk.
Set h(x) := g1(x)" " -+ g,(x) 7" € Z[[x]] C R][[x]]. Then we obtain that

hlp(xpk) = gl\p(xpk)itl o ‘9n|v<xpk)
= Gip (%) - gupp () T Bajp (%)™ -+ - By (%)™
- h‘p(x)u(x)pk_l.

—tn



Since hy, is nonzero, we obtain that h|p(x)pk_1 — u(x)?" ! and there exists a in a suitable
algebraic extension of F' such that hj,(x) = au(x). As the constant coefficients of hj, and
u are both equal to 1, we get hj,(x) = u(x). Thus for infinitely many maximal ideals p,
the reduction modulo p of the power series z]*h(x) and 2", 1 <i < n, 0 < m < nk, are
linearly dependent over R/p. Since R is a Dedekind domain, Lemma 4.3 implies that these
power series are linearly dependent over K, which means that h(x) belongs to K(x). This
is a contradiction as g1, ..., g, are algebraically independent over C(x). U
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